CLINICOPATHOLOGICAL CORRELATION IN A PATIENT WITH PREVIOUSLY TREATED BIRDSHOT CHORIORETINOPATHY

Elliott H. Sohn, MD, Kathleen R. Chirco, BS, James C. Folk, MD, Robert F. Mullins, PhD

Purpose: Birdshot chorioretinopathy (BCR) is a bilateral, chronic uveitis primarily involving the posterior segment that often results in progressive vision loss. Histopathology on eyes with BCR has been limited, but we had the rare opportunity to study the eyes of a donor with BCR. We sought to compare immunolabeling in the eyes of this donor who was treated with immunosuppression for over 30 years to age-matched controls.

Methods: From each eye, a macular punch and superotemporal regions were used for cryostat sectioning, and immunohistochemistry was performed on the sections using antibodies directed against CD45, intercellular adhesion molecule-1, IBA1, and GFAP. The vasculature-binding lectin, *Ulex europaeus* agglutinin-I (UEA-I), was also used to perform lectin histochemistry.

Results: At death, her visual acuity was 20/25 right eye, 20/250 left eye with extensive chorioretinal atrophy, vascular attenuation, and disk pallor. Compared with controls, the BCR donor had extensive degeneration of the outer nuclear layer and retinal pigment epithelium as well as choroidal thinning with inner retinal preservation. Loss of UEA-I+ choroidal endothelial cells was extensive, and atypical intercellular adhesion molecule-1 labeling and IBA+ microglia/macrophages were present along with widespread GFAP labeling throughout the retina.

Conclusion: The BCR may cause progressive chorioretinal and optic atrophy with long-standing increased leukocyte abundance throughout the retina and microglial activation especially at the retina–choroid interface.

RETINAL CASES & BRIEF REPORTS 0:1–4, 2016

From the Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa.

Birdshot chorioretinopathy (BCR) is a bilateral, chronic uveitis primarily involving the posterior segment that often results in progressive vision loss.1 Histopathology on eyes with BCR has been limited to three reports detailing hematoxylin and eosin staining and immunoperoxidase studies.2–4 We performed extensive immunolabeling of the eyes of a donor with BCR who was treated in our retina clinic for over 30 years.

Case Report

A 40-year-old woman presented in June 1981 (previously published as case 4 where electroretinogram and Goldmann perimetry results can be found) with trace anterior chamber and 1+ vitreous cells in both eyes (OU), disk edema OU, and retinal vasculitis more in the left eye than the right eye. Best-corrected visual acuity was 20/25 right eye, 20/50 left eye. Comprehensive systemic work-up (including melanoma) was negative except for positive HLA-A29. Oral prednisone initially resulted in clinical improvement but by August 1982, birdshot lesions were present in OU (Figure 1). She was maintained on various dosages of oral prednisone depending on the severity of disease (minimum 5 mg per day until death in 2014 from atherosclerotic cardiovascular disease). She refused immunosuppressives until February 1998 when cyclosporine was added. At this time, her best-corrected visual acuity was 20/25-2 right eye, 20/50 left eye with chorioretinal atrophy in the midperiphery, and arteriolar attenuation present in the posterior pole. Subtenons corticosteroid injections were given in OU. She developed adverse reactions to cyclosporine and azathioprine, so methotrexate was started in January 2003. In 2013, she was maintained on prednisone and methotrexate 17.5 mg a day and had 2+ disk pallor OU, extensive chorioretinal atrophy, and vascular attenuation OU.
Methods

Eyes from this BCR donor were compared with those from a large series of age-matched, unaffected donors obtained from the Iowa Lions Eye Bank after informed consent of the donor next of kin, and all experiments were performed in accordance with the Declaration of Helsinki. From each eye, a 6-mm trephine punch (centered on the fovea centralis), and a superotemporal central-to-peripheral retina–retinal pigment epithelium/choroid segment was collected and fixed in 4% paraformaldehyde in 10 mM phosphate-buffered saline. All samples were cryoprotected in sucrose, embedded in optimal cutting temperature, and stored at -80°C. Samples were cryosectioned to obtain 7 μm thick sections. Immunohistochemistry was performed on the sections using anti-CD45 (leukocyte common antigen marker; BD Biosciences, Franklin Lakes, NJ), anti–ICAM-1 (intercellular adhesion molecule–1; leukocyte and endothelial cell marker; R&D Systems, Minneapolis, MN), anti-IBA1 (macrophage and microglial marker; Wako Chemicals USA, Richmond, VA), and anti-GFAP (glial marker; Thermo Scientific, Waltham, MA) antibodies. Biotinylated Ulex europaeus agglutinin–I (UEA-I; Vector Laboratories, Burlingame, CA) was also used to perform lectin histochemistry to visualize the retinal and choroidal vasculature. Immunolabeling and lectin histochemistry were performed as described previously. All sections were counterstained with diamidino-phenylindole (DAPI; Molecular Probes, Eugene, OR). Sections were washed three times in 1× phosphate-buffered saline with 1 mm MgCl2 and CaCl2 for 5 minutes each. Stained retina–retinal pigment epithelium/choroid sections were imaged using fluorescence microscopy with a ×20 objective lens.

Results

The most prominent morphological features of the BCR eyes were extensive degeneration of the outer nuclear layer and retinal pigment epithelium as well as choroidal thinning (Figure 2). The inner nuclear and ganglion cell layers showed relatively good preservation. Loss of UEA-I+ choroidal endothelial cells was extensive—the normal choriocapillaris had completely degenerated, with preservation of only a few scattered vessels in Haller’s/Sattler’s layers.
The BCR eyes showed atypical ICAM-1 labeling throughout the neural retina, especially at the interface between the retina and Bruch membrane, possibly due to a wound healing response by Muller cells, which normally express ICAM-1 in the external limiting membrane. Consistent with this finding, strong and widespread GFAP labeling was present throughout the retina for all BCR sections, indicating gliosis in the scarred retina.

IBA+ microglia/macrophages were strikingly elevated in the retina and choroid compared with normal eyes, and cells in the BCR eyes tended to have shorter processes than controls. Although not comprehensively quantified in this report, the number of CD45+ cells in the inner choroid of the birdshot donor right eye macula appeared much higher than reported in normal eyes, estimated to be approximately 20 times higher than in normal eyes.5

Discussion

The BCR often causes progressive chorioretinal and optic atrophy with severe vision loss; its pathogenesis is not well understood. There is a strong association between BCR and major histocompatibility complex class I antigen HLA-A29, and in light of the high HLA-A expression in the choriocapillaris,6 T cell–mediated immunity against targets in the choroid may play a central role in causing disease.2,7 This is
consistent with the severe damage to the choroidal endothelium observed in this case. Previous histologic analyses of donor eyes with BCR have revealed non-granulomatous nodular infiltration of the choroid\textsuperscript{3,4} and lymphocytic infiltrate mixed with T-cells (CD3, CD4, and CD8) and B-cells (CD20). Our study expands on these previous studies by showing increased leukocyte trafficking throughout the retina and choroid that appears to persist long after the retinal degeneration. We also noted activation of macroglia (with GFAP and ICAM-1 activation) and microglia/macrophage activation (indicated by IBA1 labeling) especially at the retina/choroid interface. It is difficult to know whether these findings would have been similarly observed if she had tolerated the T-cell suppressive medicine cyclosporine. Although we did not specifically evaluate T-cells and B-cells, CD45\textsuperscript{+} cells (which include all classes of leukocytes) were very abundant, and this case suggests the importance of long-term immune suppression for this chronic disease. It is also uncertain whether other mechanisms could have contributed to her vision loss and histopathologic findings. Additional mechanistic studies should provide further therapeutic insights into BCR.

Key words: cell biology, human donor, post-mortem, chorioretinal, microglia, retina, choroid, histology.

Acknowledgments

We thank the donors and their families for their invaluable contributions to science and medicine; Richard Thompson, Adam Stockman, and the Iowa Lions Eye Bank staff for their consistent partnership in biomedical research.

References